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Abstract

Increasingly, models (and modelers) are being asked to address the interactions between human influences, ecological processes, and land-
scape dynamics that impact many diverse aspects of managing complex coupled human and natural systems. These systems may be profoundly
influenced by human decisions at multiple spatial and temporal scales, and the limitations of traditional process-level ecosystems modeling ap-
proaches for representing the richness of factors shaping landscape dynamics in these coupled systems has resulted in the need for new analysis
approaches. New tools in the areas of spatial data management and analysis, multicriteria decision-making, individual-based modeling, and com-
plexity science have all begun to impact how we approach modeling these systems. The term “‘biocomplexity” has emerged as a descriptor of
the rich patterns of interactions and behaviors in human and natural systems, and the challenges of analyzing biocomplex behavior is resulting in
a convergence of approaches leading to new ways of understanding these systems. Important questions related to system vulnerability and resil-
ience, adaptation, feedback processing, cycling, non-linearities and other complex behaviors are being addressed using models employing new
representational approaches to analysis. The complexity inherent in these systems challenges the modeling community to provide tools that cap-
ture sufficiently the richness of human and ecosystem processes and interactions in ways that are computationally tractable and understandable.
We examine one such tool, EvoLand, which uses an actor-based approach to conduct alternative futures analyses in the Willamette Basin,
Oregon.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The term “‘biocomplexity” is used to describe the complex
structures, interactions and dynamics of a diverse set of bio-
logical and ecological systems, often operating at multiple
spatial and temporal scales. The study of biocomplexity re-
flects an intention to understand fundamental principles gov-
erning global behavior of these systems, expressed in terms
of biological, physical, ecological and human dimensions, in
terms of the interactions and resulting patterns and structures
that collectively define system responses (Colwell, 1998;
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Levin, 1998; Manson, 2001). Several decades of study and ap-
preciation of the rich nature of the interactions that drive many
systems of vital interest to humanity have led to an increas-
ingly sophisticated set of hypotheses on how these systems re-
spond to the many perturbations and cycles that they are
exposed to. The scientific community is being asked to bring
to bear these advances in our collective understanding of sys-
tems impacted by anthropogenic influences to improve man-
agement and planning of these systems, resulting in the need
for new approaches to incorporating human behavior as an im-
portant component of ecological and environmental systems
behaviors. As human impacts stress the ability of many sys-
tems to deliver the wealth of ecological, social and economic
goods and services societies rely on, terms such as ‘““vulnera-
bility”” and “‘resilience” have come into common use as ways


mailto:boltej@engr.orst.edu
http://www.elsevier.com/locate/envsoft

J.P. Bolte et al. | Environmental Modelling & Software 22 (2006) 570—579 571

to think about system response and the implications of human
modification of these systems in maintaining functions per-
ceived as important for human and natural uses. The study
of biocomplexity identifies and defines a set of concepts, hy-
potheses and approaches for understanding and characterizing
the rich patterns of interactions and behaviors in these sys-
tems, with the goal of providing new insights into important
questions related to system vulnerability and resilience, self
organization and adaptation, feedback processing, cycling,
and non-linearities. The modeling community is developing
new approaches to representation and analysis that are allow-
ing exploration of complex systems in ways that are beginning
to answer questions about how these systems interact, evolve,
and transition to new, often unexpected, behaviors.

The challenges of representing and analyzing biocomplex
behavior are resulting in a convergence of approaches leading
to new ways of understanding these systems. Recent develop-
ments in mathematics related to complex systems analysis
have provided a variety of new tools and strategies for explor-
ing complex system dynamics (Bak and Chan, 1989; Holland,
1995; Kauffman, 1969; Fernandez and Sole, 2003). Key in-
sights arising from these analyses focus on questions related
to identifying system properties that result in self-organizing
or emergent behavior, the nature of interactions that can lead
to highly non-linear behaviors in a range of systems, and the
circumstances in which “‘surprises’ in system response may
be observed. As these concepts have been expanded from their
initial focus on primarily physical phenomena to the examina-
tion of increasingly rich ecological, economic and social sys-
tems, ecological and environmental modeling efforts have
become correspondingly more focused on incorporating bio-
complexity considerations in their approaches and analyses.
Most of these approaches embody the concept that complex
behavior arises from the collective interactions of large num-
bers of relatively simple entities (Holland, 1995; Arthur
et al., 1997). Alternatively, the recently proposed theory of
Panarchy (Holling, 2001; Gunderson and Pritchard, 2002) pro-
poses an alternative hypothesis that states that complex behav-
ior results from a small number of controlling processes
operating at multiple spatial and temporal scales. While full
articulation of the underpinnings of these approaches is be-
yond the scope of this paper, they clearly suggest that new
modeling and analysis paradigms are needed, and modelers
are beginning to incorporate concepts of self-organization, ad-
aptation, multi-scalar interactions and multiple actors along-
side more traditional process-based approaches to develop
new classes of models able to more fully characterize and sim-
ulate biocomplex systems.

Systems scientists have presented many examples of bio-
complexity conceptualizations spanning purely ecological
(Walker et al., 1969; Carpenter and Cottingham, 1997), social
(Emery and Trist, 1965; Bella, 1997), economic (Arthur et al.,
1997) and coupled human/natural systems (Sheffer et al.,
2002.) However, these broad conceptualizations have not
lent themselves to the modeler’s need for reasonably concrete,
well-articulated and operational definitions amenable to com-
putation and analysis. For example, a Google search using the

phrase ‘“‘ecosystem resilience’ returns on the order of 75000
“hits”’, most of which discuss resilience of particular systems
or classes of systems with broad brush strokes, describing in
somewhat vague, fuzzy terms the general concept of a system
being robust to change. Examined closely, what constitutes
“change” generally becomes somewhat nebulous. In some
cases, a change in the composition of the system is implied,
without reference to the magnitude of the change in question,
or whether the compositional change implies a change of func-
tion, e.g. the capacity of the system to provide a particular set
of goods and services. In other cases, the focus is on examin-
ing system behavior, to better understand circumstances in
which perturbations of the system will either be absorbed or
send the system off in a new direction.

We are seeing a transition from conceptual to more quanti-
tative methods for describing and analyzing these systems
(Carpenter and Cottingham, 1997; Carpenter et al., 1999; Lep-
perhoff, 2002; Chattoe, 1998), and a rich literature is emerging
in this area. A variety of methodologies building on and ex-
tending complex analysis of simpler physically-based systems
to quantitatively describe and model biocomplex human and
natural system behaviors are emerging, based on more tradi-
tional stability analyses applied to non-linear systems. These
analyses examine state spaces defined in terms of stability ba-
sin structure, distributions of attractors in state space, and abil-
ity of perturbations to move the system into alternate stability
domains. Extending these concepts into the biocomplexity
realm, we can define operationally useful descriptors of com-
plex behavior that are relevant to management. For example,
system resilience can be defined as the capacity of a system
to absorb perturbations while continuing to operate within it
current stability domain. Models that sufficiently characterize
the structure of the state space with respect to attractor basin
geometries can provide insight to managers on regions where
vulnerability of a system to provide specific productions may
be high. However, additional challenges exist: real state spaces
may be highly multidimensional, dynamic, and non-linear or
even folded, making analysis of their structure difficult. Fur-
ther, where management is based on multiple criteria (re-
flected by multiple model outputs), these outputs may have
substantially different state space structures. Nevertheless,
these concepts are being used to examine more realistic sys-
tems and applied to the management realm.

2. Alternative futures

In parallel to the emergence of biocomplexity as an analysis
paradigm, a number of studies have recently focused on alter-
native futures analyses (e.g. Baker et al., 2004; Hulse et al.,
2000; Santlemann et al., 2001; Steinitz and McDowell,
2001; Voinov et al., 1999; Noth et al., 2000). This has resulted
largely from a need and desire to utilize analytical approaches,
generally using process-level models synthesizing multiple
landscape elements, to predict a particular set of responses
of the target landscape to a particular set of perturbations re-
flecting alternative landscape management. These efforts gen-
erally incorporate stakeholder involvement in determining the
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nature, pattern and scale of the perturbation(s) considered, and
resulting modeled landscapes or landscape trajectories are
used to assess the outcome behaviors. While these efforts
can be very effective for moving models into the policy and
management arena and can provide insight into the implica-
tions of specific management strategies, they raise a number
of issues related to our ability to effectively model the myriad
of potential interactions and behaviors that may (or may not)
lead to surprising and unforeseen results. While opening the
door for modelers to interject current understanding of impor-
tant processes and interactions into the management of cou-
pled human/natural systems, alternative futures analyses can
place additional burdens on the modeler, particularly related
to identifying and incorporating interactions across multiple
processes, possibly across multiple spatial and temporal
scales. For example, a model-based assessment of stream bio-
logical production based on vegetative pattern at a site may
generate questionable results when the broader influences of
channel migration, wood production from upstream areas, or
large, low-periodicity flood events can substantially alter that
pattern (Van Sickle et al., 2004). The utility of incorporating
additional complexity in a model is often unclear; particularly
in situations that are data limited or mechanisms are not well
understood, simpler models may be more reliable predictors of
system response (National Academy of Sciences (NAS),
2001). Representing human decision making, and at least indi-
rectly, human values, in the landscape may be necessary to in-
corporate the influence of and feedback to the human
component of these systems, and can be accomplished through
a stakeholder process (Hulse et al., 2004) or modeled (Etienne
et al., 2003).

3. Actor-based approaches to simulating
landscape change

3.1. Overview

Landscape change modeling is at the core of most alterna-
tive futures analyses, and the last decade had seen consider-
able activity in this area (see Parker et al., 2003 for an
excellent review). This activity is in part a result of the wide-
spread availability of GIS-based platforms and datasets, com-
plimented by a rapid increase in computing power and
sophistication of representational tools for software develop-
ment resulting from a convergence of approaches derived
from individual-based modeling and complexity analysis. In
particular, actor-based approaches have become a com-
monly-used tool for representing human interactions driving
landscape change, as well as many other types of systems in
which collective behavior arises from collective behavior. Ac-
tor-based models typical explicitly represent: 1) a landscape as
a collection of decision units, defined by spatial properties and
attributes relevant to the decision making criteria relevant to
the task addressed by the modeler; and 2) entities that make
decisions and/or take actions that result in landscape change.
While the term “‘agent” is used commonly in the literature
to describe these entities, we prefer the term “‘actor”, since

“agent” has a number of connotations in computer science
distinctly different than the usage described here, and “‘actor”
has a clearer semantics consistent with common usage of the
term in a non-modeling context.

An appeal of an actor-based approach for landscape change
modeling is that modeled actors can be based in large part on
actual actors contributing to behaviors of the real system
which the model is attempting to capture, increasing the real-
ism of the model. Simulated actors may be based on individual
decision makers, collections of individuals acting as a homoge-
neous entity (i.e. an institution), or as abstractions with no spe-
cific real-world counterpart (e.g. organizational structures
reflecting collective actions that are not captured in specific
real-world organizations). From a modeling perspective, the
task of the modeler involves determining an appropriate set
of characteristics that represent the attributes of the actor rel-
evant to the model, and a set of actor behaviors that capture the
decisions or actions of the actors in the system. While the set
of necessary actor attributes is highly dependent on the prob-
lem being addressed, behaviors typically consist of some form
of decision rules that related site and/or system characteristics
to a particular actor action and resulting landscape change.
Determining an appropriate set of actors and their correspond-
ing behaviors is a significant modeling challenge, and may in-
volve expert knowledge, surveys, demographic and population
behavior analysis, and other methods; this is an active area of
research.

Self-organization and adaptation are key aspects of many
types of complex behavior generally, and landscape change
specifically. Adaptation implies that a system modifies its be-
havior, or “learns”, through the processing of feedback de-
scribing the success of current strategies at achieving desired
outcomes. Adaptive mechanisms may occur at multiple scales
and may operate though a variety of distinct pathways. At an
actor level, adaptation may involve changing decision behav-
ior, reflecting changes in landscape production, actor goal sat-
isfaction and other decision criteria. At a system level,
adaptation may manifest as higher-order changes in actor
composition, changes in decision spaces and system process
reorganization. Relatively few current models explicitly incor-
porate adaptive processes into their representations; this is an-
other area of active development.

3.2. An example alternative futures modeling
framework — EvoLand

A number of frameworks for complex systems and alterna-
tive futures analyses have been developed (Noth et al., 2000;
Sengupta and Bennett, 2003; Maxwell and Costanza, 1995;
Daniels, 1999), each providing a specific set of capabilities
for representing and manipulating supported representations
of the system of interest. These frameworks can simplify im-
plementation of models and provide standard methods for data
management, model integration, and analysis. EvoLand (for
Evolving Landscapes) is an example of a modeling tool that
supports development of spatially explicit, actor-based ap-
proaches to landscape change and alternative futures analysis.
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EvoLand provides a framework for representing: 1) a land-
scape consisting of a set of spatial containers, or integrated de-
cision units (IDU’s), modeled as a set of polygon-based
geographic information system (GIS) coverages containing
spatially-explicit depictions of landscape attributes and pat-
terns; 2) a set of actors operating on a landscape, defined in
terms of a value system that couples actor behavior to global
and local production metrics and in part determine policies
the actor will select for decision making; 3) a set of policies
that constrain actor behavior and whose selection and applica-
tion results in a set of outcomes modifying landscape attri-
butes; 4) a set of autonomous process descriptions that
model non-policy driven landscape change; and 5) a set of
landscape evaluators modeling responses of various landscape
production metrics to landscape attribute changes resulting
from actor decision making. EvoLand provides a general-pur-
pose architecture for representing landscape change within
a general paradigm incorporating actors, policies, spatially ex-
plicit landscape depictions, landscape feedback, and adapta-
tion; application-specific components are “plugged in” to
EvoLand as required to model particular processes.

The fundamental organizational structure used in EvoLand
is shown in Fig. 1. Key elements in this organizational scheme
are Policies, Actors, Actions, Policy and Cultural Metapro-
cesses, Autonomous Landscape Change processors, and Land-
scape Evaluators. Definitions for these key elements are
provided below. Taken together, these elements provide a basic
platform for assembling actor-based models of landscape
change. Because many of these elements are “‘pluggable’ soft-
ware components, the basic EvoLand platform can be used
with application-specific actor definitions, policy sets, autono-
mous process descriptions, and landscape evaluators.

3.2.1. Policies
Policies in EvoLand provide a fundamental construct guid-
ing and constraining actor land use/land management decision

making. Policies capture rules, regulations, and incentives and
other strategies promulgated by public agencies in response to
social demands for ecological and social goods, as well as fac-
tors used by private landowners/land managers to make land
and water use decisions. They contain information about site
attributes defining the spatial domain of application of the pol-
icy, whether the policy is mandatory or voluntary, goals the pol-
icy is intended to accomplish, and the duration the policy, once
applied, will be active at a particular site. As actors assess al-
ternative decisions about land management, they weigh the rel-
ative utility of potentially relevant policies to determine what
policies they will select to apply at any point in time/space,
is any. Once applied, a policy outcome is triggered that mod-
ifies one or more site attributes, resulting in landscape change.

Policies are characterized by two types of decision vari-
ables: (1) those required to be satisfied before the policy can
be considered (also known as non-compensatory attributes or
constraints); and (2) compensatory factors defining the inten-
tion of the policy at addressing specific goals, which can be
“traded off”’ against other objectives in decision making using
a multiobjective decision making algorithm. Further, policies
may optionally be constrained to operating only with selected
actor classes (e.g., all home owners, farmers with streams
flowing through their property, forest owners with anadromous
fish in adjacent streams).

3.2.2. Actors

In EvoLand, actors are entities (individuals or groups) that
make decisions about the management of particular landscape
units (IDU’s) for which they have management authority,
based on balancing a set of objectives reflecting their particu-
lar values, mandates, and the policy sets in force on the parcels
they manage. They do this within the scope of “policy sets”
that are operative on particular landscape elements over which
they have decision making control. Fundamentally, actors are
characterized by the values they express through their

Policies

Policy Metaprocess

Manages the maintenance of existing
policies and generates new policies

descriptors of criteria <

Fundamental
and actions defining a
land use management

by selectiry policies

decision Landscape
Spatial container
in which land
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Fig. 1. Conceptual framework for EvoLand.
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behaviors; examples might include ecosystem health, eco-
nomic production, or property rights. These values are corre-
lated with demographics characteristics and, in part guide
the process actors use to select policies to implement; policies
with intentions consistent with the actors’ values are more
likely to be selected by the actor for application.

In addition to actor values, EvoLand supports interaction
between actors via two mechanisms: 1) neighbor influence
on decision making; and 2) actor membership in organizations
promoting a specific value system and capable of promulgat-
ing new policies consistent with the organization’s values.
Neighbor influence is intended to capture the concept of diffu-
sion of innovation: i.e. if an actor observes a neighbor utilizing
policies that result in a successful outcome consistent with the
actor’s value system, the actor is more likely to implement that
policy. “Neighbor” is defined in terms of spatial proximity of
the two actors; an alternative approach would generalize the
location metrics to include non-spatial definitions of proxim-
ity, e.g. proximity of values systems.

Actor decision making is based on a stochastic multicriteria
model that considers multiple factors to select policies the ac-
tor will implement. These factors include the consistency of
the policy intention with the actor’s values (based on the de-
gree of self-interest the actor exhibits), the alignment of the
policy intention with global measures of scarcity of various
landscape productions (based on the degree of altruism the ac-
tor exhibits), and the degree of actor interaction with other ac-
tors successfully employing the policy. EvoLand allow the
modeler to experiment with the relative weightings of these
factors in exploring their effects on system behavior.

3.2.3. Policy Metaprocess

EvoLand employs two metaprocesses that reflect feedback
loops that modify system behavior at a high level. The first of
these, the Policy Metaprocess, modifies the policy set that is
available to actors. The second, the Cultural Metaprocess,
modifies actor behavior.

The Policy Metaprocess is responsible for generating new
policies, modifying existing policies, and removing existing
policies that are no longer relevant. An evolutionary model is
employed to manage the adaptation and creation of policies re-
sponsive to scarcity measures, i.e. a marketplace of policies is
created, where policies compete for success, defined in terms
of measures such as: 1) the frequency with which a given policy
is employed; and 2) the utility of the policy in addressing cur-
rent scarcity issues. The Policy Metaprocess is an example of
an adaptive process, using genetic operators (selection, cross-
over, mutation, and genesis) to evolve new policies based on re-
combination of successful policies, where the success
(“fitness”) of a policy is defined via the Landscape Evaluator
metrics. This approach doesn’t capture actual policymakers in
the real system, but focuses more on metrics of policy success
independent of who or what is actually creating those policies.

3.24. Cultural Metaprocess
The Cultural Metaprocess is responsible for adaptively
modifying the behavior of actors in the systems. Actor

behavior is defined by the value system used to guide decision
making and its connections to other actors. The Cultural Meta-
process uses output from the Landscape Evaluator to change
an actors values in response to shifting societal measures of
scarcity, and manages the interactions between actors de-
scribed previously.

The specific steps used by the Cultural Metaprocess are
similar to that used by the Policy Metaprocess, and focus on
allowing actors to adaptively modify their behaviors based
on landscape feedback and interactions with other actors.
The Cultural Metaprocess may (optionally) adjust actor values
in response to changes corresponding to broad societal shifts
in values as resources and production become scarce. Alterna-
tively, the Cultural Metaprocess may manifest cultural pro-
cesses though actor interactions, capturing the concept that
as scarcities manifest themselves, the actor population re-
sponds through ‘“‘experiments” that may/may not alleviate
the scarcity, and that “successful”” experiments spread through
diffusion adoption resulting from actors observing successes
achieved by other ‘“nearby” actors with similar goals. These
experiments are conducted through genesis and evolution of
new policies, applied locally. Successful policies then have
an opportunity to expand globally as an adaptive process. In
essence, the system “learns” successful policies through ex-
perimentation by individual actors, with successful policies
adopted by other actors as landscape attributes and actor inter-
actions allow.

3.2.5. Autonomous landscape change processes

Landscapes change in response to a variety of factors other
than human decision making. EvoLand support plug-in com-
ponents that periodically change the underlying landscape, re-
flecting autonomous processes that occur independently of
human actions. From an alternative futures modeling perspec-
tive, this enables EvoLand to incorporate these processes into
the simulated trajectories of change. Examples of autonomous
process models that have been developed for application using
EvoLand include vegetative succession, river channel restruc-
turing and meandering in response to flood events, or external
human population influx and distribution. EvoLand provides
a basic framework for incorporating application-specific au-
tonomous processes into a landscape change model, and man-
aging the interactions of these processes with policy-driven
landscape modifications. Together, these provide a robust rep-
resentation of change processes that can be adapted to a wide
variety of situations.

3.2.6. Landscape evaluators

These components allow EvoLand to evaluate landscape
production of metrics relevant to actor decision making.
They are typically spatially explicit models that take a land-
scape, represented as an attributed coverage of IDU’s, as input,
and generate a suite of metrics related to a specific type of sys-
tem production (e.g. ecological population abundances and di-
versity measures in the case of an ecosystem health-oriented
goal; jobs and wealth production in the case of an economi-
cally-oriented goal.) The models provide measures of
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landscape performance and serve as a primary form of feed-
back considered by EvoLand. They also provide a point at
which more traditional approaches to modeling may intersect
with actor-based approaches, since these models do not di-
rectly interact with actors, but reflect actor influences on land-
scape change as well as indirectly influencing actor behavior
via other mechanisms previously noted. In EvoLand, these
models are plug-in components, allowing alternative represen-
tations to be readily compared to better understand the impli-
cations of specific representations and factors on system
behavior, and allowing the extension of EvoLand into addi-
tional domains of consideration. Currently, EvoLand includes
evaluators for aquatic macroinvertebrate habitat, riparian veg-
etative structure, fish species abundance and richness, terres-
trial habitat, and market value of land.

3.2.7. Biocomplexity analyses

A primary rationale for an alternative futures model, as
with any modeling effort, is to provide insights on system be-
havior. The traditional tools of model analysis (e.g. sensitivity
analysis, model verification) are equally applicable to actor-
based models. However, the intrinsic complexity typically
captured in these models, and the generally long time frames
they encompass, suggest a shift in emphasis from rigorous val-
idation to a more exploratory approach to model use. In alter-
native futures analyses, we are typical more concerned with
providing reasonable estimates of the bounds of system behav-
ior than with prediction of specific outcomes, suggesting
a Monte Carlo or similar approach focusing on characterizing
the likelihood of realizing qualitatively distinct system behav-
iors. From a complexity perspective, the emphasis typically
shifts again; analyses focus on system stability, identifying at-
tractors in behavioral space, the nature and strength of these
attractors, and the factors that tend to drive the system from
one basin of attraction to another characterized by fundamen-
tally different controlling processes, productions and behaviors.

Within EvoLand, we are just starting to experiment with
various biocomplexity analyses; our current efforts focus on:
1) defining a set of experiments addressing the effects of var-
ious mechanisms of feedback processing and actor interactions
on system behavior; 2) exploring mechanisms of policy evolu-
tion and capacity to generate innovative and effective policies
as an adaptive process; and 3) characterizing the nature of the
landscape state spaces to identify dominant attractors that per-
sist under dynamic trajectories of change and the circum-
stances under which the landscape may move to an alternate
attractor basin, and 4) vulnerability of landscapes to change
under various policy scenarios.

3.3. Applying EvoLand — a case study in the Willamette
Basin, Oregon

EvoLand is currently being used to conduct a series of al-
ternative futures analysis in selected areas of Oregon’s Will-
amette River Basin, aimed at better understanding the
relationships and interactions between ecological, economic

and social drivers of change to improve management of these
areas. We are focusing on the confluences of major tributaries
along the mainstem of the Willamette River, historically areas
of both ecological richness and high anthropogenic impact.
The study areas are characterized using spatial datasets incor-
porating land use and land cover, soils and hydrography, de-
mographic, political and related cultural and physiographic
datasets. The IDU’s are determined using parcel-level infor-
mation in combination with other vector coverages relevant
to decision making, including floodplain delineations and ri-
parian buffers. Actors are defined primarily through an analy-
sis of demographic patterns; we are currently exploring the use
of additional datasets to more richly characterize actor behav-
ior. A number of goals/values are being considered, including
ecosystem health, economic production, and landscape-level
land use goals; each is represented by a landscape model
that compute a set of metrics relevant to the particular goal
considered. For example, ecosystem health is modeled using
a suite of submodels that consider fish abundance and diver-
sity, riparian vegetative structure, and upslope habitat quality;
economic production submodels include wealth production
expressed as market value of parcels. An initial set of policies
are crafted based on current operative policies in the study
areas as well as policies that are currently being contemplated.
We focus primarily on land use/land cover change, using
a 50 year analysis period and a stochastic analysis approach,
using trajectories and patterns of change to determine likely
development patterns, vulnerability of specific landscape areas
to changes in capacity to provide ecological, economic and so-
cial productions of concern. Here, we address specifically the
effects of policies that promote the development and conserva-
tion of riparian forests, or alternatively, urban development,
near the edges of an urbanizing area in the Willamette River
Basin. We are using EvoLand to: 1) explore the impacts of var-
ious feedback loops and interactions on system behavior, ex-
pressed though trajectories of change and the nature of the
resulting attractor basins of the system productions described
above; 2) identify policy characteristics that lead to more or
less vulnerable landscapes; and 3) understand the critical link-
ages between the coupled human/natural systems that collec-
tively generate landscape change.

Fig. 2 shows the initial (current) land use/land cover config-
uration of the study area, at the confluence of the McKenzie
and Willamette Rivers. The initial land distribution in the
study area was 36% urban, 32% rural (includes rural, agricul-
ture, and other vegetation), 13% forest, 10% water, and 9%
roads. EvoLand was set up to consider two alternative man-
agement strategies for lands in the riparian corridors of the
study area. The first emphasized policies that establish and
conserve forest land uses in these areas. The second empha-
sized urban development in these riparian corridors. Both pol-
icy sets were run independently for a 50-year planning
horizon. Predicted landscape configuration for the forest-ori-
ented policy set is shown in Fig. 3, and for the urban develop-
ment-oriented policy set in Fig. 4.

After 50 years of promoting forest growth outside the urban
growth boundary, the study area was predicted to contain 36%
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Fig. 2. Initial land use/land cover conditions for the McKenzie study area. Scale is approximately 15 km by 15 km.

urban, 6% rural, 40% forest, 10% water, and 9% road land
uses. After 15 years, habit for fish improved, with results de-
layed reflecting the time needed for new forests to become ma-
ture (Fig. 5). Economic conditions moved more rapidly and
were more cyclical, reflecting changes in urban areas. The ur-
ban area accommodates a population increase of 65% increas-
ing urban population density from 15.5 persons/ha to 25.5
persons/ha. The value of forest land almost triples, while rural
lands lose three-fourths their value. In this scenario rural

activities shift to forestry, the total real market value (RMV)
of land is a quarter greater at the end of the 50-year run. While
this type of transition from agriculture to forestry has not oc-
curred in the Willamette Valley, it is occurring in the nearby
Coast Range of Oregon, and the modeling suggests that if
the public wants fish and a viable rural sector, a shift to for-
estry is an option.

In November 2004, Oregonians passed a ballot measure
that may limit the utility of urban growth boundaries to limit

Fig. 3. Simulated land use/land cover conditions after 50 years under policy sets that promote forest establishment and conservation along riparian corridors.
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Fig. 4. Simulated land use/land cover conditions after 50 years under policy sets that promote urban development along riparian corridors.

urbanization. This is reflected in the second scenario where
policies favoring urbanization (while also trying to grow for-
ests and protect fish) are employed. This scenario shows the
urban area expanding to 55% of the land base, rural uses de-
creasing to 5%, and forest uses growing to 21%. Urban popu-
lation density increases by 1 person/ha. The RMV of forest
lands increase, but not enough to offset the decline in agricul-
ture. With roughly half the forest cover and people’s prefer-
ence to build along rivers, small stream health remains
constant, but after 15 years, floodplain health declines precip-
itously by year 35 (Fig. 5).

The model questions whether the goal of urban growth
boundaries to preserve agricultural lands and natural resources
like fish is possible. Shifting the rural economy to forest prod-
ucts can improve rural economic health and fish health. Re-
moving urban growth boundaries is predicted to result in the
loss of fish and farms without a corresponding increase in
the rural economy. Ecological effects in either scenario take
on the order of 15 years to develop. Here, EvoLand results
do not predict reality, but suggest possible consequences of ac-
tions and hypotheses to consider, and EvoLand provides a ve-
hicle for beginning to explore these consequences and
understand the drivers and feedbacks that may determine land-
scape change in a way that is extensible and amenable to mul-
tiple feedbacks.

Analyses such as these are fundamentally multiperspective,
integrative, and spatially distributed; an actor based approach
appears well suited to capturing the rich set of individual be-
haviors, distributed across a spatially heterogeneous land-
scape, that collectively result in the system-level patterns
these systems display. EvoLand provides a reasonably flexible
framework that allows adaptation of existing evaluative
models into an actor-based modeling paradigm, and facilitates

analysis of feedbacks, adaptive processes, and system behav-
ioral response patterns. Significant issues exist, particularly re-
lated to sufficiency of actor characterization, model validation,
and interpretation of the rich sets of spatial and temporal infor-
mation produced by the model. The modeling community has
yet to develop a broadly accepted set of approaches to these
issues.

4. Future challenges

There remain many issues and challenges related to the use
of actor-based models of biocomplex systems. Despite the
wealth of discussions in the literature related to both biocom-
plexity and actor-based modeling approaches, few concrete
examples of the use of actor-based models addressing biocom-
plexity issues have been presented; still fewer of these incor-
porate adaptive mechanisms and internal experimentation as
fundamental aspects of representation. A key issue at this
point is whether these approaches represent only a current
fad, extensions to previous methodologies, or fundamentally
new approaches to modeling and understanding complex sys-
tems. The complexity analysis models drawing from simpler
physical systems have yet to be convincingly demonstrated
to have real-word relevance to the more complex adaptive sys-
tems ecological and environmental modelers typically address.
Our current models, particularly those addressing alternative
futures analysis, are difficult to verify in any traditional way
and new approaches and datasets are needed to validating
these models. This will be a key challenge to allow more wide-
spread acceptance of these models for real-world applications.
We have yet to develop well-specified operational definitions
of key concepts like resilience, vulnerability, and adaptation,
although current models are beginning to make progress in
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Fig. 5. Comparison of landscape evaluations for economic, small stream hab-
itat, and floodplain vegetation results for forest establishment and conservation
policies (top) and urban development (bottom) policy sets over 50 year simu-
lation period. Scale is —3 to +3, with higher scores reflecting increasing pro-
duction of the metric.

this area (e.g. Carpenter et al., 1999). Indeed, no widely ac-
cepted general theoretical framework for expressing biocom-
plexity concepts currently exists, much less a common set of
approaches for representing this complexity in our models of
these systems. However, a number of approaches are being de-
veloped and being applied to the analysis of real systems. In
particular, actor-based modeling approaches are beginning to
emerge and appear to provide a powerful tool for representing
the wealth of individual decisions, actions, and interactions
that frequently characterize these systems, particularly as
adaptive processes are explicitly represented in these models.
Models such as EvoLand provide examples for which opera-
tional approaches to representing and characterizing actors,
adaptive processes, and interpretation of biocomplex re-
sponses are being developed.

References

Arthur, W.B., Durlauf, S.N., Lane, D.A., 1997. The Economy as an Evolving
Complex System. Addison Wesley, Reading, MA.

Bak, P, Chan, C., 1989. Self-Organized Criticality. Physics News in 1988.
Physics Today January S-27.

Baker, J.P.,, Hulse, D.W., Gregory, S.V., White, D., Van Sickle, J., Berger, P.A.,
Dole, D., Schumaker, N.H., 2004. Alternative futures for the Willamette
River Basin, Oregon. Ecological Applications 14 (2), 313—324.

Bella, D.A., 1997. Organized complexity in human affairs: the Tobacco Indus-
try. Journal of Business Ethics 16, 977—999.

Carpenter, S.R., Cottingham, K.L., 1997. Resilience and restoration of lakes. Con-
servation Ecology 1 (1), 2. URL: <http://www.consecol.org/voll/issl/art2>.

Carpenter, S., Brock, W., Hanson, P., 1999. Ecological and social dynamics in
simple models of ecosystem management. Conservation Ecology 3 (2), 4.
URL: <http://www.consecol.org/vol3/iss2/art4>.

Chattoe, E., 1998. Just how (un)realistic are evolutionary algorithms as repre-
sentations of social processes? Journal of Artificial Societies and Social
Simulation 1 (3). URL: <http://www.soc.surrey.ac.uk/JASSS/1/3/2.html>.

Colwell, R., 1998. Balancing the biocomplexity of the planet’s living systems:
a twenty-first century task for science. Bioscience 48 (10), 786.

Daniels, M., 1999. Integrating Simulation Technologies with Swarm, Agent
Simulation: Applications, Models and Tools Conference. University of
Chicago.

Emery, F., Trist, E., 1965. The causal texture of organizational environments.
Human Relationships 18, 21—31.

Etienne, M., LePage, C., Cohen, M., 2003. A step-by-step approach to building
land management scenarios based on multiple viewpoints on multiagent so-
cial systems. Journal of Artificial Societies and Social Simulation 6 (4).
URL: <http://jasss.soc.surrey.ac.uk/6/2/2.html>.

Fernandez, P., Sole, R.V., 2003. The Role of Computation in Complex Regula-
tory Networks, SFI working paper 03-10-055. Sante Fe Institute, NM, 19 pp.

Gunderson, L.H., Pritchard, L., 2002. Resilience and the Behavior of Large-
Scale Systems. Island Press, Washington D.C., 287 pp.

Holland, J.H., 1995. Hidden Order: How Adaption Builds Complexity. Helix
Books, Addison-Wesley, Reading, MA, 184 pp.

Holling, C.S., 2001. Understanding the complexity of economic, ecological
and social systems. Ecosystems 4, 390—405.

Hulse, S.W., Eilers, J., Freemark, K., Hummon, C., White, D., 2000. Planning
alternative future landscapes in Oregon: evaluating effects on water quality
and biodiversity. Landscape Journal 19 (2), 1—19.

Hulse, D.W., Branscomb, A., Payne, S.G., 2004. Envisioning alternatives: us-
ing citizen guidance to map future land and water use. Ecological Appli-
cations 14 (2), 325—341.

Kauffman, S.A., 1969. Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology 22, 437—467.

Lepperhoff, N., 2002—. SAM — Simulation of computer-mediated negotia-
tions. Journal of Artificial Societies and Social Simulation 5 (4). URL:
<http://jasss.soc.surrey.ac.uk/5/4/2 . html>.

Levin, S.A., 1998. Ecosystems and the biosphere as complex adaptive systems.
Ecosystems 1, 431—436.

Manson, S.M., 2001. Simplifying complexity: a review of complexity theory.
Geoforum 32 (3), 405—414.

Maxwell, T., Costanza, R., 1995. Distributed modular spatial ecosystem mod-
elling. International Journal of Computer Simulation: Special Issue on Ad-
vanced Simulation Methodologies 5 (3), 247—262.

National Academy of Sciences (NAS), 2001. Assessing the TMDL Approach
to Water Quality Management. National Academy Press, Washington DC.

Noth, M., Borning, A., Waddell, P., 2000. An Extensible, Modular Architec-
ture for Simulating Urban Development, Transportation and Environmen-
tal Impacts. Technical Report 2000-12-01. University of Washington,
Department of Computer Science, 25 pp.

Parker, D.C., Manson, S.M., Janssen, M. A., Hoffmann, M.J., Deadman, P., 2003.
Multiagent system models for the simulation of land-use and land-cover
change: areview. Annals of the Association of American Geographers 93 (2).

Santlemann, M., Freemark, K., White, D., Nassauer, J., Clark, M.,
Danielson, B., Eilers, J., Cruse, R.M., Galatowitsch, S., Polasky, S.,
Vache, K., Wu, J., 2001. Applying ecological principles to land use deci-
sionmaking in agricultural watersheds. In: Dale, V.H., Haeuber, R.A.
(Eds.), Applying Ecological Principles to Land Management. Spinger
Verlag, New York, pp. 226—252.

Sengupta, R., Bennett, D.A., 2003. Agent-based modeling environment for
spatial decision support. International Journal of Geographical Information
Science 17 (2), 157—180.


http://www.consecol.org/vol3/iss2/art4
http://www.consecol.org/vol3/iss2/art4
http://www.soc.surrey.ac.uk/JASSS/1/3/2.html
http://jasss.soc.surrey.ac.uk/5/4/2.html
http://jasss.soc.surrey.ac.uk/5/4/2.html

J.P. Bolte et al. | Environmental Modelling & Software 22 (2006) 570—579 579

Sheffer, M., Westley, F., Brock, W.A., Holmgren, M., 2002. Dynamic interac-
tions of societies and ecosystems — linking theories from ecology, econ-
omy and sociology. In: Gunderson, L.H., Holling, C.S. (Eds.), Panarchy:
Understanding Transformations in Human and Natural Systems. Island
Press, Washington D.C., pp. 195—239.

Steinitz, C., McDowell, S., 2001. Alternative futures for Monrow
County, Pennsylvania: a case study in applying ecological principles.
In: Dale, VH. Haeuber, R.A. (Eds.), Applying Ecological
Principles to Land Management. Springer Verlag, New York, pp.
165—193.

Van Sickle, J.V., Baker, J., Herlihy, A., Bayley, P., Gregory, S., Haggerty, P.,
Ashkenas, L., Li, J., 2004. Projecting the biological condition of streams
under alternative scenarios of juman land use. Ecological Applications
14 (2), 368—380.

Voinov, A., Costanza, R., Wainger, L., Boumans, R., Villa, F., Maxwell, T.,
Voinov, H., 1999. Patuxent landscape model: integrated ecological eco-
nomic modeling of a watershed. Journal of Ecosystem Modelling and Soft-
ware 14, 473—491.

Walker, B.H., Ludwig, D., Holling, C.S., Peterman, R.M., 1969. Stability of
semi-arid savanna razing systems. Ecology 69, 473—498.



	Modeling biocomplexity - actors, landscapes and alternative futures
	Introduction
	Alternative futures
	Actor-based approaches to simulating landscape change
	Overview
	An example alternative futures modeling framework - EvoLand
	Policies
	Actors
	Policy Metaprocess
	Cultural Metaprocess
	Autonomous landscape change processes
	Landscape evaluators
	Biocomplexity analyses

	Applying EvoLand - a case study in the Willamette Basin, Oregon

	Future challenges
	References


