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Abstract Coastal flood hazard zones and the design of coastal defenses are often devised using the maxi-
mum recorded water level or a “design” event such as the 100 year return level, usually projected from
observed extremes. Despite technological advances driving more consistent instrumental records of waves
and water levels, the observational record may be short, punctuated with intermittent gaps, and vary in qual-
ity. These issues in the record often preclude accurate and robust estimates of extreme return level events.
Here we present a total water level full simulation model (TWL-FSM) that simulates the various components of
TWLs (waves, tides, and nontidal residuals) in a Monte Carlo sense, taking into account conditional dependen-
cies that exist between the various components. Extreme events are modeled using nonstationary extreme
value distributions that include seasonality and climate variability. The resulting synthetic TWLs allow for
empirical extraction of return level events and the ability to more robustly estimate and assess present-day
flood and erosion hazards. The approach is demonstrated along a northern Oregon, USA littoral cell but is
applicable to beaches anywhere wave and water level records or hindcasts are available. Simulations result in
extreme 100 year TWL return levels as much as 90 cm higher than those extrapolated from the “observational”
record. At the Oregon site, this would result in 30% more coastal flooding than the “observational” 100 year
TWL return level projections. More robust estimates of extreme TWLs and tighter confidence bounds on return
level events can aid coastal engineers, managers, and emergency planners in evaluating exposure to hazards.

1. Introduction

The coastline is one of the most dynamic environments on earth, where the combination of winds, waves,
currents, and high water levels alter coastal morphology over a wide range of time scales. Forcing that
results in morphological evolution ranges from millennial variability in sea level to winter storms producing
high waves and surges that can dramatically change the coastline in a matter of hours. In the U.S. alone,
30% of the population lives bordering open ocean or associated water bodies [Crowell et al., 2007] and as
much as 3% of the population living in these coastal zones are at risk from the 100 year coastal flooding
event [Crowell et al., 2010]. The high percentage of people living and recreating along the coastline creates
an increasingly vulnerable population to coastal hazards. Accurate representations of not only the high level
of natural variability of the coastal system but also the potential impacts of human-induced climate change
are needed to improve our knowledge of coastal risk.

Significant effort has been directed toward detecting and understanding the temporally and spatially vari-
able accelerating trends in global mean sea level rise (SLR) [e.g., Church and White, 2006, 2011; Cazenave
et al,, 2014] influenced by processes in the ocean, atmosphere, and cryosphere [e.g., Menéndez and Wood-
worth, 2010; Sallenger et al., 2012]. Changing patterns of interannual climate variability (e.g., El Nino South-
ern Oscillation (ENSO)) [Santoso et al., 2013] and storm frequency and intensity [Graham and Diaz, 2001;
Knutson et al., 2010; Wang et al., 2014], possibly attributed to global climate change [Graham and Diaz,
2001; Emanuel, 2013; Cai et al., 2014], has the ability to increase the range of coastline at risk to flooding
and erosion events when combined with accelerating SLR trends. Therefore, while understanding and pre-
dicting the range and variability in SLR is important, it is the coincidence of high water levels and storm-
induced waves that often results in extreme inundation and erosion along vulnerable coastlines [Ruggiero
et al., 1996, 2001; Sallenger, 2000; Woodruff et al., 2013].

Extreme value analysis has been developed to quantify a behavior or process at unusually large or small lev-
els and to project the probability of the occurrence of these events [Gumbel, 1958; Leadbetter et al., 1983;
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Coles, 2001]. Multiple methods have been proposed for different environmental variables including the
annual maxima method [Gumbel, 1958; Coles, 2001; Smith, 2001], the r-largest maxima [Smith, 1986], and
the peak-over threshold approach [Smith, 1989; Davison and Smith, 1990]. These extreme value approaches
for estimating return levels from instrumental records depend largely on the record length, which must be
sufficiently long. Statistically, longer records imply smaller standard errors, and meteorologically, the record
should be long enough to encompass the full range of variability in extremes. For processes that result
from the combination of two or more individual processes, extremes can only be computed based on the
length of the shortest individual record. For example, extreme total water level (TWL) return levels, pro-
duced by the combination of the mean sea level, the deterministic astronomical tide, nontidal residuals,
and storm wave-induced water level variations [e.g., Sallenger, 2000; Ruggiero et al., 2001], may be biased
low if the maximum recorded nontidal residuals occurred before the wave measurement record begins or if
both records are relatively short.

Circumventing the problem of records limited by gaps, full simulation, probabilistic methods have begun to
be incorporated with extreme event modeling to produce thousands of estimates of wave climates and/or
water levels for robust statistics on extremes [Hawkes et al., 2002; Garrity et al., 2006; Callaghan et al., 2008;
Goring et al., 2010; Li et al., 2014; Gouldby et al., 2014]. In tide or surge dominated environments, emphasis is
placed on simulating only water levels [Goring et al., 2010; Zhang and Sheng, 2013], while in other locations,
where large wave events enhance the elevation of flooding events, the wave climate is also simulated [Call-
aghan et al., 2008; Li et al., 2014; Gouldby et al., 2014]. Due to the interrelatedness of many of these simu-
lated variables (e.g., large wave heights and storm surges are often generated by the same meteorological
systems) special care is taken to model the dependencies between variables [Hawkes et al., 2002; Callaghan
et al.,, 2008; Corbella and Stretch, 2013; Li et al., 2014; Gouldby et al., 2014]. While each of these simulation
methods utilizes extreme value theory to model the extreme events, they consider the population of
extremes to be stationary, and have thus far ignored nonstationary drivers of extremes such as the effects
of seasonality or ENSO.

Our focus here is on extreme TWLs on sandy beaches. In order to analyze extreme events produced by a
combination of factors, the TWL is first calculated by combining each of the “observational” TWL compo-
nents (tide, nontidal residuals, and storm wave-induced water level variations). TWL return levels can then
be extracted from extreme value distribution fits to the combination of components instead of to the
extremes of the individual components. However, because extreme TWLs are a combination of a wide
range of variables, there is a likelihood that coastlines have not experienced the co-occurrence of the maxi-
mum level of astronomical tide, nontidal residuals, and wave-induced water levels over the relatively short
instrumental record length. To address these limitations, we develop a time-dependent, full simulation TWL
model (TWL-FSM) that can be applied to coastal defense design and flood hazard risk assessments. We first
fit independent, extreme significant wave heights (SWHs) and nontidal residuals to nonstationary extreme
value distributions. Next, we simulate multiple, synthetic records of arbitrary length, for each of the TWL
components. Each component of the TWL is simulated based on approximately 30 or more years of data,
and includes the joint dependencies between respective TWL components. These simulations produce vari-
ous combinations of events and more robust estimates of TWL return levels. We then can compare TWL
return levels extracted from the synthetic records to those extrapolated from the “observational” record’s
extreme value distribution fit. While this manuscript is primarily intended to highlight the methodology of
the full simulation model, an example of the applicability of the model is demonstrated along a representa-
tive littoral cell for northern Oregon, USA.

1.1. Application Area

The methodologies presented in this paper can be applied to a range of coastlines that have wave and water
level measurements or hindcasts available; here we choose to apply it to a sandy coastline in Oregon, USA
(Figure 1). The Oregon coastline is essentially a series of discrete littoral cells segmented by large, erosion
resistant headlands [Komar, 1998]. The Rockaway littoral cell, a representative littoral cell in northern Oregon,
is a 30 km stretch of coastline between Cape Falcon and Cape Meares, two headlands that extend offshore
into deep water (Figure 1c). Century and decadal-scale shoreline change rates for this cell are quite variable
[Ruggiero et al., 2013]; however, coastal retreat rates approach 2.0 m/yr along the most developed section of
coast. Hot spot erosion to the Rockaway cell due to storms during the major El Nino of 1997-1998 and the
severe winter of 1998-1999 have left the coastline in a degraded state [Allan and Komar, 2002]. Since
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Figure 1. (a) Location of region of study (inset) in North America, (b) Region of study, the Pacific Northwest (PNW) with (c) Rockaway, Oregon littoral cell inset. Locations of NDBC buoys
(cyan), the WIS hindcast (magenta), and NOAA tide gauge (green) used to compute the hourly “observational” TWL record are also displayed.

persistent erosion has begun to threaten local infrastructure, we apply our TWL simulation model to this
coastline to evaluate both chronic and extreme coastal flood and coastal change hazards in this location.

2. Methods

Below we present methods for (1) developing a continuous, hourly “observational” time series for each TWL
component, (2) evaluating extreme TWLs in the context of Sallenger’s [2000] storm impact scale to assess
exposure of the Rockaway, Oregon littoral cell to coastal erosion and flooding, (3) modeling both stationary
and nonstationary extreme events, and (4) simulating each TWL component for more robust estimates of
the range of extreme events.

2.1. Development of an “Observational” TWL Time Series
At any given time, the elevation of the TWL is comprised of four components such that

TWL=MSL+1,+nymm+R (1)

where MSL is the mean sea level, 17, is the deterministic astronomical tide, iy is the nontidal residual, and
R is the wave runup [Ruggiero et al., 2001] (Figure 2). Using equation (1), “observational” TWLs are derived
by combining runup computed using both wave buoy data and estimates of beach slope with water levels
from tide gauge measurements. In order to encompass as much of the range of variability as possible in the
combination of components that drive extreme TWL events, a continuous, long record is preferable. To
develop a TWL time series relevant to the northern Oregon coast, we obtained hourly water level data from
the NOAA operated South Beach (SB) tide gauge station 9435380 (http://tidesandcurrents.noaa.gov/),
located in Yaquina Bay, Oregon (Figure 1 and Table 1). The SB tide gauge record covers the time period of
1967-2012, and is the longest, most continuous record of water levels for the north-central Oregon coast.
The raw data were adjusted for benchmark subsidence following the approach of Burgette et al. [2009].

The water level data extracted from the tide gauge consist of three of the components of the total water
level, the MSL, n,, and nyrz. The MSL is the average sea level with respect to some datum, taken here to be
the orthometric land-based datum NAVD88. The 1, is deterministic and can be computed using the sta-
tion’s harmonic constituents, while the 1,7z is defined as any elevation change in the water level not
related to the deterministic tide. This can include low-frequency components like water level variability due
to water temperature and the geostrophic effects of currents (e.g., the seasonal signal or monthly mean sea
level anomalies) and/or high-frequency components due to the presence of winds and low atmospheric
pressure (e.g., storm surge) [Komar and Enfield, 1987]. While the 1,7z is traditionally defined as the
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Figure 2. Definition sketch of total water levels (TWL) on a sandy, dune-backed beach. MSL is the mean sea level, (1,) is the predicted
astronomical tide, (17y7z) is the nontidal residual and (R) is the wave-induced change in water level, wave runup. Dune erosion occurs when
the TWL, relative to a datum such as the land-based NAVD88 datum, exceeds the elevation of the dune toe, and overtopping/flooding
occurs when the TWL exceeds the elevation of the dune crest (modified from Ruggiero et al. [2001]).

difference between the measured tide and the predicted astronomical tide, 17y7z, produced through simple
subtraction can be corrupted by timing errors or datum shifts [Pugh, 1987; Haigh et al., 2013]. While these
errors can be insignificant when the 1y, is large, they can have greater influence on 7z estimates along
coastlines with relatively modest 1y, such as along the Oregon coastline where 1z, are rarely greater
than 1 m [Allan et al., 2011]. To more accurately extract the #yz,, 2 year blocks of the water level time series
were transformed into the frequency domain and following the spectral methods of Bromirski et al. [2003],
tide bands were removed and replaced with amplitude and phase estimates consistent with the concurrent
nontide continuum. The result is a 1,7z time series that excludes energy at tidal frequencies and preserves
seasonal oscillations in the water level.

The wave-induced component of TWLs, wave runup, is a combination of the maximum setup at the shore-
line [e.g., Longuet-Higgins and Stewart, 1963, 1964; Raubenheimer et al., 2001], and swash, the time-varying
oscillations about the setup including both incident and infragravity motions. Wave runup is often empiri-
cally related to the deep water wave height, wave length, and the local beach slope [e.g., Holman and Sal-
lenger, 1986; Ruggiero et al., 2001], making it a highly site-specific computation. Here we use the empirical
relation of Stockdon et al. [2006] for R,q;, corresponding to the 2% exceedance percentile of extreme runup
maxima on sandy beaches and parameterized by

v, [H0L0(0.563/3§+0.004)]”2}
2

Ry0p=1.1 {0.35/)’f(HoLo)

where f; is the beach slope, Hy is the deep water SWH, and L, is the deep water wave length (where
Lo= gTs?/2m, Tp is the peak wave period, and g is the acceleration due to gravity).

Buoys representative of northern Oregon include the deep water National Data Buoy Center (NDBC) (http://
www.ndbc.noaa.gov/) buoy 46005,
approximately 500 km from the coast,

Table 1. Wave Climate and Tide Gauge Data Sources shelf—edge buoy NDBC 46089, approxi-
Name ID_ Source Data Range DRt mately 150 km from the coast, and NDBC
Wave Data buoy 46029, 40 km from the Columbia
Tillamook 46089 NDBC Nov 2004-ongoing 2289 m . .

Columbia River Bar 46029  NDBC  Mar 1984-ongoing 1448m  hiver mouth (Figure 1 and Table 1). NDBC
Washington 46005 NDBC  Sep 1976-Jul 2012 2981 m 46089 was chosen as the priority buoy for
WIS Station 81048 USACE  Jan 1981-Jan 2011 N/A deve|oping the combined time series due
Tide Data

to its location, relatively close to the coast

South Beach (SB) 9435380 NOAA  Feb 1967-ongoing :
but in deep enough water such that the
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data are not affected by shoaling and refraction processes. Since NDBC buoy 46089 has a modest record
length (installed in 2004), other buoys in the region were used to complete the time series. Following the
approach of Allan et al. [2012], we apply simple empirical transformations to the cumulative distribution
functions of the wave climates of each individual buoy such that the transformed climates are representa-
tive of the climate at NDBC 46089. Remaining gaps in the record are filled with wave hindcast data obtained
from the U.S. Army Corps of Engineers (USACE) Wave Information Studies (WIS), Station 81048 (http://wis.
usace.army.mil/). Combining these transformed records, we create a nearly continuous 32 year hourly time
series of waves (1980-2012) from which runup is calculated using estimates of SWH, T,,, and f; extracted
from lidar data (equation (2)). Runup is then combined with the tide gauge time series (accounting for
wave propagation times from the shelf edge to the coast) and an almost continuous hourly record of
“observational” TWLs is developed.

2.2. Sallenger’s [2000] Storm Impact Scale

The exposure of the Rockaway, Oregon littoral cell to erosion and flood hazards can be assessed using the
storm impact scaling approach of Sallenger [2000], which compares TWLs to the elevation of backshore mor-
phology. Alongshore varying morphodynamic parameters such as dune crest, dune toe, and beach slope (the
average slope between the horizontal location of mean high water (MHW) and the dune toe), were derived
from high-resolution lidar data collected in September 2002 [NOAA Coastal Services Center, 2002]. Automated
techniques first developed by Plant et al. [2002] and Stockdon et al. [2009] for the southeast U.S. coast were
adapted by Mull and Ruggiero [2014] for the U.S. Pacific Northwest (PNW) coast and were used to extract these
morphodynamic parameters at a 10 m resolution in the alongshore (Figure 3, plots 2 and 3).

Because our record is developed based on the deep water wave climate of the PNW (representative of the
location of NDBC buoy 46089), it is necessary to propagate the waves toward the nearshore over the
region’s bathymetry. Numerically transforming waves for a number of time series would be prohibitively
computationally expensive. Therefore, lookup tables (conceptually similar to the radial basis functions of
Gouldby et al. [2014]) were developed to relate offshore (deep water) triplets of SWH, Ty, and mean wave
direction (MWD) to their nearshore (~20 m water depth) equivalents in an efficient manner. The wave cli-
matology was then discretized into 1738 representative wave conditions which were transformed to the
nearshore over nested grids with 3’ to 30” resolutions [Garcia-Medina et al., 2013] using stationary model
runs of SWAN [Booij et al., 1999]. Waves were transformed with a 100 m alongshore resolution to the 20 m
contour (or where significant wave breaking first occurs, SWH=hy, where y=0.4, h=depth). Any combi-
nation of a deep water triplet’s nearshore equivalent can then be interpolated from the 1738 model runs at
each 100 m location (Figure 3, plot 4). A comparison between transforming specific wave conditions from
the offshore to the nearshore using SWAN and transforming those waves to the nearshore using the lookup
tables suggests interpolation errors typically less than 5% for each triplet variable [Allan et al., 2012]. The
Stockdon et al. [2006] wave runup parameterization relies on the deep water equivalent SWH and T, as
inputs, so transformed waves were linearly back shoaled from the 20 m contour to deep water.

Once alongshore varying dune morphology and hydrodynamics are produced, the storm impact scale [Sal-
lenger, 2000] is applied to assess coastal hazards in northern Oregon. To investigate erosional events that
have a high probability of occurrence throughout a given year, i.e., chronic hazards, we assess the amount
of time that the TWL is between the dune toe and dune crest (TWL > dune toe, TWL < dune crest) and
develop a parameter referred to as impact days per year (IDPY) as a proxy for erosion [Ruggiero et al., 2001;
Ruggiero, 2013]. To assess extreme flooding potential along the coastline, we examine the extreme TWL
return levels (e.g., the 100 year event, the storm-induced TWL that has a 1% chance of occurring in any
given year), and the elevation of the dune crest to determine the percentage of coastline the extreme event
has the potential to overtop. If the TWL is higher than the dune crest (TWL > dune crest), we use this as a
proxy for flooding. Because flooding and erosion hazards are most severe during maximum storm-induced
TWLs, we focus on the evaluation of the most extreme events.

2.3. Evaluating Extreme Total Water Levels

The peak-over threshold (POT) approach [Davison and Smith, 1990], where some high-threshold, u, is
selected and all peaks over that threshold, i.e., threshold excesses, are evaluated over a length of time, is
chosen to model extremes due to its ability to capture a larger extreme data set than block maxima or
r-largest methods [Madsen et al., 1997a, 1997b; Méndez et al., 2006]. All threshold excesses are assumed to
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Figure 3. Geomorphic and hydrodynamic inputs for the application of Sallenger's [2000] storm impact scale along the Rockaway, Oregon
littoral cell. Data have been smoothed to a 100 m alongshore resolution. The most rightward plot is an example of a nearshore transforma-
tion from offshore NDBC 46089 to the 20 m contour for a significant wave height of 10 m with a peak period of 17 s. The red circle on the
most leftward plot shows the location of the representative transect with iy ~ 0.04 in the littoral cell.

be independent, identically distributed (iid) random variables, and are modeled using the Generalized
Pareto Distribution (GPD),
—-1/¢
- <1 ¥ iy) ££0
ag

1—exp (f %) &=0

G(y)=

where y is a vector of threshold excesses, (y=X—u), ¢ > 0 is the scale parameter, and ¢ is the shape
parameter. In order to combine the exceedences over a threshold, N, with the frequency of the exceeden-
ces, we use the GPD-Poisson model [Smith, 2001; Katz et al., 2002; Méndez et al., 2006], which assumes the
number of exceedences from any given year follows a Poisson distribution with annual mean, vt , where v
is the event rate per year and t=1. This model relates to the Generalized Extreme Value (GEV) distribution
for annual maxima [Pickands, 1975; Coles, 2001; Smith, 2001] by

(u—u)} o "

W

where p is the location parameter, iy > 0 is the scale parameter, and the shape parameter, &, is common to
both the GPD and GEV distribution. Parameters of both the GEV and GPD-Poisson distributions are esti-
mated using maximum likelihood estimation (MLE), an optimization procedure which adopts the model
that assigns the highest probability to the data through a likelihood function (see Coles, 2001, Katz et al.,
2002, or Méndez et al., 2006 for more information).

o=y+&(u—p), v= {H—cf
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2.3.1. Nonstationary Extreme Value Distributions

Since nonstationarity is inherent to many climatological processes [Smith, 2001; Katz et al., 2002; Milly et al.,
2008; Menéndez et al., 2009], the parameters of the GPD-Poisson model can be allowed to vary through
time. Because of the relationship between the models (equation (4)), the GEV then also inherits this time-
dependence, and the parameters, u, ¥, and &, can be modeled as nonstationary variables containing
seasonal effects, long-term trends, and climatic influences, such as ENSO variability [Katz et al., 2002; Méndez
et al., 2006, 2007, 2008]. Interannual climate variability can be included in the model through regional cli-
mate indices as covariates [e.g., Méndez et al., 2006]. Climate indices represent an aggregate summary of
the state of the climate system, often related to ENSO. The climate indices of focus in this study, the Pacific/
North American Pattern (PNA), the Southern Oscillation Index (SOI), and the Multivariate ENSO Index (MEI),
are relevant to the northern hemisphere [Stenseth et al., 2003] and previous studies have significantly
related them to SWHs (PNA and SOI) [e.g., Allan and Komar, 2000; Méndez et al., 2006], and sea levels (SOI
and MEI) [e.g., Méndez et al., 2007; Komar et al., 20111. For simplicity, here we only model the location
parameter, 1(t), as a function of time, however, including nonstationarity in the other parameters is rela-
tively straightforward [Katz et al., 2002; Méndez et al., 2007; Menéndez et al., 2009].

2.3.2. Extreme Value Model Selection

To investigate model fits involving different arrangements of multiple parameters, we utilize a combination
of information criteria, diagnostic plots, and likelihood ratio tests. The Akaike Information Criteria (AIC)
[Akaike, 1974],

AIC= —2I(p)+2(p) (5)

where p is the number of parameters in the model, and 7(p) is the maximum of the log likelihood resulting
from the model, is used to compare the quality of the goodness of fit and the complexity (number of
parameters) of each model. The smaller the AIC, the better the model fit. However, the AIC does not deci-
pher if all of the candidate models fit poorly. In order to test the fit of the candidate models, quantile-
quantile (QQ) and probability (PP) plots are used for assessing how closely two data sets agree. In general, if
the observed data follow the chosen distribution fit, they will fall onto a straight (one-to-one) line in a PP or
QQ plot. Finally, to objectively determine which of the many potential models present the best fit to data,
we use the likelihood ratio test [McCullagh and Nelder, 1989],

1
{h(M)=lo(Mo)} > 5%?1—a (6)

where [;(M;) and Ip(Mo) are the maximized log likelihood functions under nested models M; and M,
respectively, and Xﬁ,‘l—a is the 1—u quantile of the »2 distribution with k degrees of freedom. Large values of
this statistic indicate nested model M explains substantially more of the variation then My, at the « level
of significance.

2.3.3. Approaches for Estimating Return Level Events

The observational record approach combines, via equation (1), the measured water levels and com-
puted wave runup into an hourly “observational” TWL time series which is then transformed into iid
events by “declustering” (see section 2.4.1). The iid time series is then fit to extreme value distributions
to determine the return level events of interest. To calculate a 100 year return level, even if the record
does not exceed 100 years in length, the independent TWL record is fit to both stationary or nonstation-
ary GPD-Poisson distributions and then the return level estimates, y (t), for the return period, 1/q, are
extracted using

fu(t)— —[- _g)Em 5
Jq(t)= a) g(t){‘ [~log (1-q) '} E(t) 40 ,
ji(t)= (1) log [~log (1-q)] 2(t)=0

where 0 < g < 1. Confidence intervals are obtained using the delta method [Coles, 2001], which uses the
asymptotic normality property of maximum likelihood estimates.

We develop a full simulation method, described in detail in section 2.4 below, to model extreme TWL events
not necessarily present in the extreme “observational” record, but physically capable of occurring. In order
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to address the random co-occurrence of extreme events, we simulate daily synthetic records of arbitrary
length of each of the main components of TWLs including SWH, T, nyz, and 1,. We also create synthetic
records of mean wave direction (MWD), for modeling wave propagation to the nearshore, and of the
selected climate indices to represent alternative climatic realizations. Return levels derived from this full
simulation approach are empirically extracted directly from the synthetic data, using the “count back”
method [Hawkes et al., 2002; Goring et al., 2010] and confidence intervals are estimated using bootstrapping
techniques [Efron and Tibshirani, 1993; Davison and Hinkley, 1997].

2.4. Total Water Level Component Distribution Modeling

Below we outline how we model the individual components ultimately included in the TWL-FSM. Modifying
the approach of Callaghan et al. [2008], we (1) fit independent extreme SWH and #yrz events to a time-
dependent GPD-Poisson model, (2) fit dependency distributions between the extreme SWHs and g, (3)
fit the conditional dependency between SWH and T, (4) determine an appropriate distribution fit to model
MWD and climate indices, (5) determine an appropriate distribution fit to model the deterministic tide that
occurs during the daily maximum TWL, and (6) simulate the wave climate, water levels, and ultimately the
TWLs on beaches, using the prescribed distributions.

2.4.1. Fit Extreme SWH and 1, to Time-Dependent GPD-Poisson Models

In order to ensure the independence of large SWH and #,z; events, we “decluster” storm events by choosing
the maximum SWH and 7z event every 3 days [Méndez et al., 2006; Ruggiero et al., 2010], the approximate
time scale of northeast Pacific extratropical storms. Following Ruggiero et al. [2010], thresholds for POT mod-
eling were identified by selecting an average of five extreme events per year over the length of each record.
We then fit the independent SWHs and # s, over threshold to a variety of time-dependent GPD-Poisson dis-
tributions and select the model most representative of the distribution of each extreme time series.

2.4.2. Fit Dependency Distributions Between Extreme SWHs and #yp

Modeling multivariate extremes adds a level of complexity compared to univariate modeling due to the
interrelated nature of many processes, e.g., low-pressure atmospheric systems produce both storm surge
and above average SWHs. In order to account for any dependency between SWH and nyzz, we first convert
the approximate marginal distributions of both physical variables using the transformation [Coles, 2001;

Callaghan et al., 2008],
_o-1eoy\ ! X
—(Iog{1—v(t> e’ }) {0 £0

f(log {17v(t)exp ()%) })1 E(t)=0

where X are the threshold excesses and v(t), the probability of an individual observation to exceed the
threshold, u, is calculated using equation (4). The transformed variable, x, has a distribution function with
margins that are approximately standard Fréchet when X > u [Coles, 2001]. This transformation of X is used
for both SWH and #z and allows for the comparison of the two variables in a consistent scale, where the
distribution’s dependence characteristics are well understood. Following Callaghan et al. [2008], we use the
logistics model [Tawn, 1988] to model the dependency between SWH and #yyz,

X=

P{X <X, Y < y}:F(ny)Ze_ [Xfx—w +y’“71]7 (9)

where x and y are the rescaled Fréchet variates and o is the measure of dependence between them. When
o =0, x, and y are perfectly dependent variables, while & = 1 corresponds to x and y being independent
variables. The dependency parameter, ¢, is estimated by maximizing the log likelihood of this function,
which is censored when a bivariate pair exceeds a threshold in just one of its components [see Coles, 2001;
Callaghan et al., 2008]. We assume that the dependency between SWH and 15 is stationary.

2.4.3. Fit Conditional Dependency Between SWH and T,

T, is conditionally related to SWH due to physical mechanisms, such as wave steepness, (SWH/L), that
restricts the possible range of T, for a given SWH. Callaghan et al. [2008] modeled T, variability with a log-
normal distribution described by three parameters dependent on SWH. For the PNW data set, we find better

SERAFIN AND RUGGIERO

©2014. American Geophysical Union. All Rights Reserved. 6312



@AGU Journal of Geophysical Research: Oceans

10.1002/2014JC010093

model fits when the T, variability is modeled using a normal distribution with the mean, y;, and standard
deviation, o7, as a function of SWH as follows,

1/2
(7, o7) = <a(SWH)b, (Szﬁ) ) (10)

where a, b, and c are fitted parameters.

2.4.4. Determine the Distribution Fit for MWD and Climate Indices

In order to incorporate seasonality into parameters not modeled using extreme value distributions, we investi-
gate their known monthly empirical distributions. Since the monthly distributions of MWD failed to quantitatively
fit any standard known distributions, these distribution fits are modeled empirically from the observed data.

If the most representative GPD-Poisson model fit for SWH or 7z includes a proxy for interannual climate
variability, monthly distributions of the selected climate indices are modeled using their respective monthly
empirical distributions. This allows for random realizations of ENSO and other low-frequency climate vari-
ability to influence the simulated extreme events in patterns modeled from the recorded climate indices.

2.4.5. Determine the Distribution Fit for Tide During the Daily Maximum TWL

The maximum TWL does not always occur during the daily maximum high tide, such that choosing to
consistently simulate the daily maximum tide would artificially inflate estimates of TWLs. To avoid contriv-
ing conservatism, we investigate the percentage of time that the daily maximum “observational” TWL
coincides with the maximum daily tide. After accounting for these instances, we develop an approach for
appropriately simulating the differences between the daily maximum tide and the tide occurring during
the daily maximum TWL. These differences are separated into four exponentially distributed elevation
bins, such that each bin relates to a group of elevations of the daily maximum tide. Random sampling of
the exponential distribution from each bin produces a value to subtract from the daily maximum tide,
ensuring extreme TWL occurrence over an accurate range of tide levels.

2.4.6. Simulating Total Water Levels

Synthetic time series are simulated for each component of the TWL beginning at time t, using Monte Carlo
simulation techniques. In order to simulate in a Monte Carlo sense, random numbers are generated from a
uniform distribution based on each TWL component’s prescribed cumulative distribution function (CDF)
(Table 2). Therefore, given any cumulative probability distribution function, F(x)=P{X < x}, we can trans-
form a uniform distribution, U(0, 1), to F(x) by solving F(x)=P{X < x}=A, where A ~ U(0, 1) (see Fig-
ure 4, top). For SWH and 1y, we transform the random number estimate, A, to the known distribution that
the SWHs and  #yr, have previously been transformed to, the Fréchet distribution. Based on the probability
of occurrence of the transformed value, the estimate is transformed back to the physical scale via the GPD-
Poisson or the fitted monthly distribution, dependent on the variable’s threshold (see Figure 4, bottom).

Following methods from Callaghan et al. [2008], we use the two-step Gibbs sampling technique [Geman
and Geman, 1984]. In order to incorporate the standard errors of the GPD-Poisson parameter estimates
into the simulation, we sample parameter estimates from a Gaussian distribution where the best fit mod-
el’s parameters are the mean and the standard errors are the approximate standard deviations.

2.4.6.1. Simulation Procedure
1. Randomly sample from the monthly
empirical CDF of each climate

Table 2. Sampling Distributions for Simulating Each TWL Component®

Component Nonextreme Extreme

SWH (m) Monthly lognormal distribution Nonstationary index. If two indices are Imearly cor-
GPD-Poisson related, this correlation is repro-

MWD (°) Monthly empirical distribution duced in the simulations for that

Tp () Normal distribution conditionally

dependent on SWH month.

Nnrr(M) Monthly logistic distribution Nonstationary . .
. 2. Simulate time-dependent SWH and

At (M) 60% daily maximum tide; s following steps 1and 2 (a, b, ¢,

Climate indices

40% slightly less
Monthly empirical distribution

Distributions selected for simulating the TWL component parameters are
discussed in section 2.4.

and e) in section 3.1.7 of Callaghan
et al. [2008]. For picks lower than
threshold values, probability distri-
butions for random sampling are
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defined by (1) lognormal
distribution fits to the
monthly empirical distribu-
tions for SWH and (2) logis-
tic distribution fits to the
monthly empirical distribu-
tions for . In order to
incorporate the standard
error in parameter estima-
tion for distribution fits, the
parameters estimated for
each distribution (GPD,
logistic, and lognormal) are
randomly simulated.

U(1,0)

3. T, is simulated from the

_EXt_rem_e normal distribution (equa-
Distribution tion (10)). First, o7 and iy
(GPD) are determined based on

the randomly generated

SWH, then T, estimates are
randomly selected from the
derived normal distribution.

Physical Wave Height Variate, X 4. MWD is randomly simulated

from the monthly empirical
Figure 4. Schematic of the simulation process across different distribution scales. (top) . L .
Transformation of a uniform random variate, A, to a known distribution. In this case, the cumulative distribution
known distribution is the Fréchet distribution. (bottom) The physical variate is then trans- function. If MWD is Iinearly
formed out of Fréchet space based on the probability of occurrence, v, of x determined by correlated with SWH, this
either the fitted monthly distribution or GPD-Poisson distribution if below or above thresh-
old, respectively (modified from Callaghan et al. [2008]).

Fréchet
distribution
" threshold

correlation is reproduced in
the simulations.

5. In order to simulate the tide, the 32 year deterministic tide time series is repeated such that we are simulat-
ing “modern day” extremes and not including longer-term tide cycles in our time series. This is to ensure
an accurate comparison between simulated and “observational” extreme TWLs. First, the daily maximum
tide for every day is selected from the repeated tide time series. In this case, the maximum daily TWL
occurs during the maximum daily tide approximately 60% of the time. Therefore, for 40% of the data, the
tidal estimate must be less than the maximum daily tide. This is achieved by selecting a random day in
time from the daily maximum time series. The maximum tidal elevation for that day fits into one of the
four previously determined elevation bins, which correspond to an exponential fit representing the differ-
ences between the tide during the daily maximum TWL and the maximum daily tide. A random estimate is
sampled from the exponential, and this value is subtracted from the maximum daily tide.

These steps are repeated for approximately 186,270 iterations, creating synthetic daily maxima TWL
records with lengths of 510 years. The first 10 years of data are wasted to ensure the simulation converges
to a Markov Chain. To optimize the number of simulations necessary to robustly estimate extreme TWLs,
the mean of the 50 and 100 years SWH and #y return levels are examined for stability. This produces
multiple, synthetic, TWL components representing different realizations of the daily “observational”
record.

3. Results

We first characterize the climatologies of the measured wave, water level, and computed hourly TWL
records at a representative transect in the Rockaway littoral cell. Next, we describe the selected nonstation-
ary extreme value models characterizing the extreme, independent SWHs and #yzz,. Then, we demonstrate
that the synthetic records accurately represent the daily “observed” TWL components and compare TWL
return level events. Last, we compare the “observed” and simulated alongshore variable impact days per
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Figure 5. Combined wave buoy and hindcast data transformed to represent NDBC 46089. The different colors represent wave data
from different sources where NDBC buoy 46089 is represented by black, NDBC buoy 46029 is represented by red, NDBC buoy
46005 is represented by green, and WIS hindcast 81048 is represented by blue. See Figure 1 for NDBC buoy and WIS hindcast
locations.

year (IDPY) and overtopping from extreme return levels for the Rockaway, Oregon littoral cell in the context
of exposure to extreme events.

3.1. TWL Time Series

Continuous hourly time series for all TWL components were generated for northern Oregon. Time series
representing NDBC buoy 46089’s wave climate produced an approximately 32 year record with 99.3%,
99.3%, and 95.1% coverage of SWH, Tp, and MWD, respectively (Figure 5). In this region, the tide is mixed
and predominantly semidiurnal. Spectral removal of the tide bands results in a 57z time series that
excludes tidal signals, preserves seasonal oscillations in the water level (Figure 6), and covers 99.1% of the
32 year record. Alongshore varying beach slopes (fi¢) were then combined with the transformed wave cli-
mate data using equation (2), to produce alongshore varying Ryq, estimates, that are 95.1% complete. Here
we examine a representative transect near the center of the Rockaway Beach, Oregon subcell with a fore-
shore beach slope of approximately 0.04. Combining all components, produces an “observational” hourly
TWL time series that is 94.3% complete between 1980 and 2012 (Figure 6).

Significant seasonality exists in both the wave and water level components comprising the TWLs at the
representative transect. SWHs are on average 3.1 m in the winter, with an average T, of 11.8 s. These values
decrease to 1.9 m and 9.7 s in the summer for SWH and T, respectively. 1yzz, have similar seasonal
fluctuations and vary about 24 cm between summer (lower) and winter (higher). Much like SWH and 77z,
TWLs are also higher in the winter. The largest monthly averaged TWL is 2.6 m with a seasonal range of
approximately 1 m (Figure 7).

The maximum TWL event in the hourly record is 6.9 m, relative to NAVD88. This event was produced by the
combination of a 2.33 m tide (probability of exceedance ~4.0%), a 0.48 m 7z (1.5%), @ 11.5 m SWH
(0.01%), and a 20 s T, (0.15%) that occurred on 2 December 1987. Ry, during this event (at the
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Figure 6. Hourly “observational” tide (i7,), nontidal residual (i7yrz), wave runup (R,9), and computed total water level (TWL) time series for
northern Oregon over 1980-2012, relative to NAVD88.

representative transect with ¢, =0.04) was 4.09 m (0.002%)), and therefore contributed approximately 60%
of the TWL (Figure 8). In more than half of the ~150 events included in extreme value analysis (~5 events
per year), wave-induced water levels accounted for >50% of the TWL signal.

Note that the most extreme TWL was not produced by the largest event on record for any of the individual
components at this transect. If the largest event corresponding to each TWL component (SWH = 14.5 m,
occurring on 3 December 2007, T, = 20 s, the largest period conditionally dependent on a 14.5 m SWH in
this region, 1, = 2.97 m occurring on 29 January 1983, and 7z = 0.95 m occurring on 15 November 1981)
had coincided (a very improbable occurrence), the maximum TWL produced would be approximately 2 m
higher than the largest “observed” at this transect.

3.2. Selected Extreme Value Models

Independent extreme SWHSs and 17z, Were fit to a variety of nonstationary extreme value models in order
to find the model that best represents each component’s variability over different time scales. Threshold
values of 7.5 and 0.45 m, for SWH and 1,7z, respectively, were selected based on ensuring approximately
five extreme events on average per year. Models were tested and compared considering long-term trends,
seasonal cycles, and proxies for interannual climate variability. Ultimately, the model that explains the most
variability in the extreme SWH is

Usyr (1) = Bo+ B cos (27t) + B,sin (27t) + By cos (4nt) + B,sin (4nt)+ Bons PNA(L) (11)
while extreme 1y, fit best to the model
Untr(t)=PBo+ Bycos (2mt)+ B,sin (27t) + BoyaPNA(L) + By MEI(t) (12)
where t is time in years, f3, is a mean value, f3;, f§, are coefficients corresponding to the annual cycle, f;, 5,
are coefficients corresponding to the semiannual cycle, and fi, fpna are linear coefficients corresponding

to the PNA or MEI climate indices. The most representative model was selected by evaluating the AIC and
comparing to other nested models using the likelihood ratio test as a measure of significance.
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Figure 7. Representative TWL climatology (representative transect f/;=0.04). The two lines indicate the monthly mean TWL (black) and
the monthly maximum TWL (red) in respect to NAVD88.

Most of the variation in the SWH data is due to the seasonal cycle, modeled as two harmonics within the
location parameter. The remaining variation is due to climatic variability represented by the PNA. The most
representative model fit lowers the minimized negative log likelihood by 183 units as compared to the sta-
tionary model fit, statistically significant at the 0.000001 level. Compared to the next best nonstationary
model fit, which does not include a climate index, the selected model is statistically significant at the 0.03
level. The estimated value of iy, in the selected model is 0.29, so that every unit increase in PNA results in
an estimated increase of approximately 29 cm in SWH. For example, this means that for a particularly high
PNA value of 2.5, occurring during the 1982/1983 El Nino, 0.7 m of extreme wave height variability can be
related to the climate patterns the PNA represents.

The majority of the seasonal variation in the ;3 can be represented by a single harmonic. The rest of the
variation in the 7y is due to climate variability modeled by both the MEI and the PNA. This fit improves
the minimized negative log likelihood by approximately 287 units, also statistically significant at the
0.000001 level when compared to the stationary model fit. Compared to the next best model fit, which rep-
resents climate variability described by only the MEI, the selected model is statistically significant at the 0.01
level. Every unit increase in the PNA and MEI results in approximately 1.9 cm and 3.2 cm of increased water
levels, respectively. This attributes approximately 13 cm of water level elevation during strong El Nino years
when the MEl index is close to a value of 3 and the PNA is near 2.

3.3. Full Simulation

To optimize the number of simulations necessary to robustly estimate extreme TWLs, the mean of the
50 (not shown) and 100 year SWH and 1,7z return levels are examined for stability. After 45 itera-
tions, 100 year return levels stabilize around 0.99 and 14.6 m for ny;; and SWH, respectively (Figure
9). We therefore choose to simulate 50 synthetic records of each TWL component as a representative
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Figure 8. The individual components, Ry, tide, and 77z of the maximum “observational” total water level (TWL) on record, in respect to
NAVDB88. Ry, accounts for approximately 60% of this elevation.

sample size for return level estimation. Climate indices were linearly correlated for the months of Janu-
ary to April, and during these months, the simulations must account for this correlation. Cumulative
distribution functions (CDFs) of simulated daily maxima for each wave climate parameter (SWH, T,
MWD) compares well to the CDFs of the daily “observational” wave parameters (Figure 10). The main
focus of this study is on the extreme events, which are represented in the tail of the CDF due to their
low probability of occurrence. Similar to the comparison with the whole CDF, the tails of the simulated
parameter CDFs and the tails of the daily “observed” CDFs also compare well (Figure 10 insets). This
result confirms that the distribution of each wave climate parameter has been simulated appropriately.
Because not all of the components are independent (e.g.,, SWH and #yrz, SWH and T,, MEI and PNA)
scatterplots of TWL components are investigated to ensure an example simulation reproduces the rela-
tionship between dependent components (Figure 11). Careful consideration has been taken to model
the dependency between SWH and #,, and that the percentages of simulated data are represented
well in each of the four quadrants ((1) (Hs < un,, nymm > Untr) + (2) (Hs < um,, e < Unmg) » (3)

(Hs > up,, nnme > unr) , and (4) (Hs > un,, nyme < untr)) (Figure 11). The difference in the percentage
of the simulated and independent “observed” SWH and 1z over their respective thresholds is under
8%. We find similarly acceptable agreement for the joint distributions of SWH and T,, SWH and MWD,
and the correlation between the MEI and PNA indices (Figure 11).

CDFs of the Ry, and the simulated water level parameters, i,z and tide during the daily maximum TWL,
also agree with the daily “observed” distributions used for model input (Figure 12). Again, since the tails of
the CDFs of the individual simulated TWL components represent the tail end of the CDFs of the input data
very well (Figure 12), any change in our eventual estimates of extreme TWLs will be primarily due to the
synthetic data set capturing more combinations of the co-occurrence of large events. Last, we compare one
example synthetic record to the daily “observational” time series for each TWL component. From this
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Figure 9. 100 year return level estimates for SWH and 1, by number of iterations, computed by averaging each additional simulation
return level estimate. The number of simulations was selected based on the amount of runs necessary for this variable to become stable.

comparison, it is qualitatively clear the simulations of daily maxima adequately reproduce the seasonality
inherent to the data set, as well as the interannual variability over a 32 year period (Figure 13).

3.4. Return Level Estimates

Return level estimates from the independent “observational” TWL record at the representative transect are
extrapolated from the extreme value distribution fit (ury, =5.0 m) using equation (7). At this location, the
return level estimate of the 10 year event is 6.47 m (£0.25, 95% confidence interval), while the 100 year
event is 7.08 m (£0.56, 95% confidence interval). In comparison, the average TWL return levels and corre-
sponding 95% confidence intervals for the 10 and 100 year event across all 50 full simulation runs are

6.67 m (+0.16, 95% confidence interval) and 7.37 m (£0.26, 95% confidence interval), respectively (Figure
14 and Table 3). Extreme TWL return levels produced by the TWL-FSM are slightly larger than those extrapo-
lated from the 32 year “observational” record with tighter confidence bounds. This suggests that, given suf-
ficient time, the random superposition of TWL components can combine to produce extremes that are
larger than those that occurred in the relatively short “observational” record.

3.5. Application for Evaluating Chronic and Extreme Coastal Hazards

Dune impact (TWL>dune toe, TWL<dune crest) from the alongshore varying TWLs computed from the
nearshore-transformed daily “observational” record is highly variable across the littoral cell with an average
of approximately 15 (standard deviation=23) impact days per year (IDPY). Results from the TWL-FSM show
the alongshore average increases to 21 (standard deviation=29) IDPY (Figure 15). The average dune
height along this littoral cell is 8.4 m, which limits how often this stretch of coast is overtopped during the
year; however, simulations indicate the lowest lying elevations may overtop 1-9 times a year, while the
daily “observational” record indicates less frequent overtopping. While highly variable across the littoral cell,
an increase of impact and overtopping days per year implies more areas may be vulnerable to chronic ero-
sion and flood hazards than the daily “observational” record suggests.
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Figure 10. Cumulative distribution functions (CDF) comparing the simulated wave climate record (purple) to the daily “observational”
record (black). (a) The significant wave height, (b) The mean wave direction, and (c) The peak period. Insets of tail behavior are included to
show consistency in the extremes, the focus of this study.

We also compare the alongshore varying 100 year TWL return level produced by the nearshore-
transformed “observational” record and the synthetic record to estimate extreme flooding potential along
the Rockaway littoral cell. The extracted “observational” 100 year return level estimate overtops (TWL>dune
crest) 17% of the coastline, while the mean 100 year event produced by the TWL-FSM results in 22% of the
dunes overtopping (Figure 16). The maximum difference between the synthetic 100 year TWL return level
estimates and the “observed” 100 year TWL return level estimates across all beach slopes in this littoral cell
is just under 1.0 m, while the average difference is approximately 30 cm (Figure 17). Simulation return levels
result in an increased percentage of overtopping and tighter confidence bounds on these events compared
to the “observational” return levels.

4, Discussion

The addition of climate indices into the modeling of extreme SWH and 7,7z events allows for evaluation of
the amount of variability that is due to large-scale climate patterns, e.g., ENSO. The PNA is a measure of the
strength of the westerly winds and the position of the jet stream, both of which have a major influence on
wave generation in the region [Hasselmann et al., 1976]. Because the PNA is related to the position of storm
tracks in the northeast Pacific, it could also influence episodic storm surge events driven by strong winds.
The MEI quantifies ENSO variability over six variables, including sea level pressure, surface winds, and sea sur-
face temperature. Since a 1z by definition includes water level changes due to a range of nontidal proc-
esses, the correlation we find with the MEI is intuitive. The simulation of the climate indices relating to
extreme wave and water levels allows the TWL-FSM to represent large-scale climate patterns with a similar
frequency of occurrence and similar monthly distributions to the historical records of the climate indices. The
multiple realizations of the simulated climate indices not only properly represent the distributions of the
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Figure 11. One example simulation (purple) compared to the daily “observational” record (black). (top left) The significant wave height
(SWH) plotted against the nontidal residuals (i7y7). (top right) The SWH plotted against the peak period (Ty,). (bottom left) The SWH plotted
against the mean wave direction (MWD). (bottom right) The MEI index plotted against the PNA index. Red lines on the top left plot indicate
the respective thresholds for 1z and SWH.

historical records, but also permit randomness in the order of ENSO events driving interannual variability in
extreme TWLs.

Generating synthetic records with a length of 500 years allows for the empirical extraction of return level
events rather than an extrapolation from a model fit to a short record. If, however, we investigate the influ-
ence of fitting the extreme value distributions to 32 year segments of synthetic data (to be consistent with
the length of our “observational” time series), the parameter estimates are within the standard error bounds
of the input GPD-Poisson distribution fits and the return level estimates still converge on the empirically
extracted return levels. Simulated extreme TWL return levels result in increased overtopping and tighter
confidence bounds on these events compared to the “observational” return levels, further emphasizing the
benefit of simulating different combinations of the TWL components. These findings suggest current appli-
cation of a projected 100 year TWL event or the maximum water level on record as the extreme event esti-
mate may not be sufficient for coastal hazard planning.

Our initial comparison between the “observed” and simulated extreme return level events described above
(Figure 14 and Table 3) uses only a single representative cross-shore transect with a beach slope of approxi-
mately 0.04. Taking the alongshore variability into account for both the simulated and “observational” record
results in 100 year TWL return levels that are on average, 30 cm higher, but can be as large as 90 cm higher
than “observational” 100 year TWL return levels for various beach slopes across the littoral cell (Figure 17).
Across the majority of the Rockaway littoral cell, an increase to the 100 year TWL return level of approxi-
mately 30 cm is not enough to overtop much more of the dune on this coastline (22% versus 17%). However,
comparing the maximum simulated 100 year TWL return level event across all transects with the “observed”
100 year TWL return level increases the total overtopping to 30%, impacting 76% more of the coastline than
the “observational” return levels project. The average 100 year event estimated by the TWL-FSM is rarely less
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Figure 14. Comparison of total water level (TWL) return level estimates extrapolated from the independent “observational” record using
extreme value theory and extracted from the TWL-FSM results. In this case, waves are shoaled to the nearshore then reverse shoaled to
deep water before TWL computation. Black points are the independent “observational” TWL estimates, the red line is the best model fit,
and the gray hashed lines represent the 95% confidence intervals on the model fit. Blue points are the TWL return levels from each of the
50 simulations, cyan points are the average return level from the 50 simulations, and black hashed lines are the bootstrapped 95% confi-

dence intervals.

than the 100 year event estimated by the “observational” record, and the spread of the simulated 100 year
return level show mostly positive differences between these two events (Figure 17). Therefore, across a range
of hydrodynamic inputs and varying coastal morphology, the TWL-FSM indicates a potential for higher return

level events than the “observational” record estimates.

While the simulated synthetic TWL components accurately represent the observational TWL components,
there are several possible improvements to the approach. We have modeled #z, directly, however, they
are comprised of both high (e.g., storm surge) and low-frequency (e.g., monthly mean sea level anomalies)

Table 3. Total Water Level (TWL) Return Level Estimates and Corre-
sponding Confidence Intervals®

Return Levels (m)

Return
Period (year) Observational (Cl) TWL-FSM (Cl)
10 6.47 (0.25) 6.67 (0.16)
25 6.73 (0.36) 6.94 (0.16)
50 6.91 (0.45) 7.17 (0.26)
100 7.08 (0.56) 7.37 (0.26)
500 7.43 (0.83) 7.70 (0.37)

“Return level estimates are for a representative transect in the Rock-
away, Oregon littoral cell with a beach slope of approximately 0.04.
Waves have been shoaled to just before breaking and then reverse-
shoaled back to deep water for the empirical runup parameterization.

processes that modify water levels. Splitting
the #y7z into low and high-frequency signals
[Méndez et al., 2007; Merrifield et al., 2013]
would perhaps provide better extreme value
distribution fits [Méndez et al., 2007]. Modeling
the conditional dependency between a high-
frequency 1z component and SWH also may
result in a stronger relationship between the
two since their drivers are more closely
related. Initial results suggest splitting up
these components allows for more climate
variability to be explained. Currently, we do
not take into account any autocorrelation
when modeling climate variability through
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Figure 15. Longshore variability of impact days per year (IDPY) in the Rockaway littoral cell. Alongshore averaged IDPY for the daily “obser-
vational” record are 15 (+23) while alongshore averaged IDPY increases to 21(%29) using the simulated data.

climate indices. Despite representing the frequency of El Nino and La Nina years correctly, we miss out on
the occurrence of back-to-back events, important for understanding the extent of coastal erosion. Future

work will focus on modeling the climate indices as Markov sequences to include this important
autocorrelation.

The TWL-FSM does an appropriate job capturing the amount of data in extreme space (1.4% and 1.38%,
“observed”; 1.27% and 1.36%, simulated; 1,7z and SWH, respectively), however, estimates of concurrent
extremes are biased low (0.61%, “observed”; 0.31%, simulated, upper right quadrant in Figure 11 top left).
Since the dependency parameter, o, partially governs the co-occurrence of extremes, we examine the influ-
ence of this parameter on the amount of simulations that fall into this quadrant. By lowering the depend-
ency parameter to 0.7 and 0.6 (i.e.,, more dependent than our computed value of 0.83), we find better
agreement in the concurrent extreme quadrant (0.5% and 0.65%, respectively). The dependency parameter
is also inversely related to the elevation of TWL return level events—the smaller «, the higher the return
level estimate (100 year TWL return level: ~7.98 m for o = 0.83; ~8.01 m for o = 0.7; ~8.15 m for & = 0.6; com-
puted using deep-water conditions). While the logistics model used here (equation (9)) captures some of the
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Figure 16. Longshore variability of the 100 year TWL return level event in the Rockaway littoral cell. The average 100 year TWL return level
event across the 50 simulations results in 30% more of the coastline being overtopped than the daily “observational” record indicates. The
bars to the right indicate the locations that the extreme TWL estimates overtop the dune crest.

dependency between 7 and SWH, it may not appropriately capture the seasonal to interannual dependence
between events. Therefore, we may be able to create more realistic representations of the dependency
between SWH and nyr, and a better agreement in the percentage of concurrent extreme SWH and 7, using
both a time-varying o and threshold estimates for the POT [Coles et al., 1994]. Better extreme value distribution
fits and conditional dependency fits would provide a more accurate representation of extreme events, there-
fore improving our overall TWL return level estimates.

In order to account for the uncertainty in the GPD-Poisson parameter estimates of the extremes (and the log-
normal or logistic distribution parameter estimates of the nonextreme data), we sample from the standard
error estimates around the best model fit, allowing each simulation to sample from slightly different SWH and
nnrr distributions. This inclusion of uncertainty has a minimal effect on the TWL return level estimates, increas-
ing estimates by <10 cm and widening the confidence bounds only slightly. However, the confidence bounds
are still narrower than those produced by the “observational” extreme TWL estimates. There is additional
uncertainty, related to other parameters, which could be included in the TWL-FSM. For example, the Stockdon
parameterization of Ry, has an RMSE of ~20 cm, which can be added to the bounds of computed runup dur-
ing simulations. We do not include this uncertainty for this application since it would be present in both the
“observational” and simulated records and therefore would not contribute to a difference in extreme TWLs.

Some stretches along the Rockaway littoral cell are backed by hard coastal protection structures. While in
this application we have used the Stockdon et al. [2006] parameterization for wave runup throughout the lit-
toral cell, it may not be the most appropriate formulation for these protected beaches as it was derived
solely from data collected on sandy beaches. Other approaches for computing wave runup on rubble
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Figure 17. Longshore variability of the difference between the TWL-FSM and “observational” 100 year TWL return level across the Rock-
away littoral cell (plot 3). Hashed gray lines display the difference between the maximum (and minimum) simulated 100 year TWL return
level and “observational” 100 year TWL return level.

mound structures [e.g., van der Meer and Stam, 1992; Hughes, 2004] or vertical seawalls [van der Meer, 2002]
exist and could be implemented into the methodology. Perhaps more importantly, the geomorphology of
the coast is constantly evolving, while the parameters used here to evaluate coastal hazards (beach slope,
dune crest elevation, and dune toe elevation), were extracted from a single lidar flight in 2002. Therefore, to
create a more accurate representation of flood and erosion hazard risk, the variability of beach and dune
morphology could be accounted for either through probabilistic techniques or numerical modeling. The
approaches used here to simplify the problem are similar to techniques used in Callaghan et al. [2008] and
Gouldby et al. [2014] for modeling erosion.

|rr

The TWL-FSM produces synthetic records that are an accurate representation of our “observational” record. The
approach has been designed such that it easily accommodates any possible continued changes to the various
components of TWLs in a future climate. The historical records in our region of model application (U.S. PNW)
not only show relative sea level change [Komar et al,, 2011] but also increasing trends in SWHs [Allan and
Komar, 2000; Ruggiero et al., 2010; Méndez et al., 2010]. Projections of future sea level changes, possible changes
to the wave climate, and changes in ENSO variability, are at present quite uncertain [e.g., National Research
Council, 2012; Hemer et al., 2013; Santoso et al., 2013; Wang et al,, 2014], and at this point little is known about
how these changes will impact overall TWLs [Ruggiero, 2013]. Our ongoing work will therefore focus on investi-
gating the impacts of future climate scenarios on TWLs, using a range of approaches including both statistical
[e.g., Izaguirre et al.,, 2012; Wang et al.,, 2014] and dynamical [e.g., Hemer et al., 2013] downscaling approaches.

5. Conclusions

This paper presents the TWL-FSM, a full simulation, probabilistic TWL model that captures the seasonal and
interannual climatic variability in extreme events. This full simulation approach includes the following steps:
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the simulation of climate indices representing alternate realizations of the climate record; the simulation of
extreme SWH and n,7z from a nonstationary GPD-Poisson model that includes the conditional dependency
between the two, or, for nonextreme conditions, from distributions based on lognormal or logistic distribu-
tion fits, respectively; the simulation of T, based on the conditional dependency between T, and SWH; and
the simulation of other key components for producing TWLs, for example, the tide and MWD.

Our simulations capture a wider variety of extreme events that while not necessarily occurring in the “obser-
vational” record are certainly physically capable of occurring based on present-day TWL component distri-
butions. In an application of the full simulation model to a representative littoral cell in the U.S. PNW, the
TWL-FSM results in 100 year TWL return levels on average 30 cm (but as large as 90 cm) higher than TWL
return levels estimated from the independent “observational” record. The amount of time that dunes are
subjected to erosive processes increases approximately 40%, while the amount of coastline affected by
overtopping during the 100 year TWL return level event increases by approximately 30%. TWLs are simu-
lated using present-day conditions; therefore, any increase in return levels is due to both the larger variation
of SWH, T, and MWD combinations and resulting transformation to the nearshore, ENSO variability, and to
the random chance of co-occurring high wave and sea level events. Robust estimates of design storm
events are necessary for design of coastal defenses and flood hazard risk assessment, and the full simulation
approach improves upon these estimates by narrowing confidence bounds around extreme events. While
our ongoing research is focusing on incorporating future climate scenarios into this model, the method
advances the current understanding of extreme TWL return levels in the PNW by allowing for more robust
estimates of extreme TWLs, and therefore, improving knowledge of coastal risks.
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